Double mutant P53 (N340Q/L344R) promotes hepatocarcinogenesis through upregulation of Pim1 mediated by PKM2 and LncRNA CUDR
نویسندگان
چکیده
P53 is frequently mutated in human tumors as a novel gain-of-function to promote tumor development. Although dimeric (M340Q/L344R) influences on tetramerisation on site-specific post-translational modifications of p53, it is not clear how dimeric (M340Q/L344R) plays a role during hepatocarcinogenesis. Herein, we reveal that P53 (N340Q/L344R) promotes hepatocarcinogenesis through upregulation of PKM2. Mechanistically, P53 (N340Q/L344R) forms complex with CUDR and the complex binds to the promoter regions of PKM2 which enhances the expression, phosphorylation of PKM2 and its polymer formation. Thereby, the polymer PKM2 (tetramer) binds to the eleventh threonine on histone H3 that increases the phosphorylation of the eleventh threonine on histone H3 (pH3T11). Furthermore, pH3T11 blocks HDAC3 binding to H3K9Ac that prevents H3K9Ac from deacetylation and stabilizes the H3K9Ac modification. On the other hand, it also decreased tri-methylation of histone H3 on the ninth lysine (H3K9me3) and increases one methylation of histone H3 on the ninth lysine (H3K9me1). Moreover, the combination of H3K9me1 and HP1 α forms more H3K9me3-HP1α complex which binds to the promoter region of Pim1, enhancing the expression of Pim1 that enhances the expression of TERT, oncogenic lncRNA HOTAIR and reduces the TERRA expression. Ultimately, P53 (N340Q/L344R) accerlerates the growth of liver cancer cells Hep3B by activating telomerase and prolonging telomere through the cascade of P53 (N340Q/L344R)-CUDR-PKM2-pH3T11- (H3K9me1-HP1α)-Pim1- (TERT-HOTAIR-TERRA). Understanding the novel functions of P53 (N340Q/L344R) will help in the development of new liver cancer therapeutic approaches that may be useful in a broad range of cancer types.
منابع مشابه
Overexpression of PKM2 promotes mitochondrial fusion through attenuated p53 stability
M2-type pyruvate kinase (PKM2) contributes to the Warburg effect. However, it remains unknown as to whether PKM2 has an inhibitory effect on mitochondrial function. We report in this work that PKM2 overexpression inhibits the expression of Drp1 and results in the mitochondrial fusion. The ATP production was found to be decreased, the mtDNA copy number elevated and the expression level of electr...
متن کاملHBx-related long non-coding RNA DBH-AS1 promotes cell proliferation and survival by activating MAPK signaling in hepatocellular carcinoma
Accumulating evidence supports an important role for the hepatitis B virus x protein (HBx) in the pathogenesis of hepatitis B virus (HBV)-induced hepatocellular carcinoma (HCC), but the underlying mechanisms are not entirely clear. Here, we identified a novel long noncoding RNA (lncRNA) DBH-AS1 involved in the HBx-mediated hepatocarcinogenesis. The levels of DBH-AS1 were positively correlated w...
متن کاملLncRNA Miat Promotes Proliferation of Cervical Cancer Cells and Acts as an Anti-apoptotic Factor
There are a sub-population of cells in tumor tissues known as cancer stem cells (CSCs) which have similar features with stem cells, including self-renewal and differentiation capacity. Recently, it was established that not only stem cells factors such as Oct4, but also ES-associated lncRNAs are contributing to various regulatory aspects of CSCs. Myocardial infarction associated transcript (MIAT...
متن کاملCytoplasmic CUL9/PARC ubiquitin ligase is a tumor suppressor and promotes p53-dependent apoptosis.
A wide range of cell stresses, including DNA damage, signal to p53 through posttranslational modification of p53. The cytoplasmic functions of p53 are emerging as an important constituent of role of p53 in tumor suppression. Here, we report that deletion of the Cul9 (formerly Parc) gene, which encodes an E3 ubiquitin ligase that binds to p53 and localizes in the cytoplasm, resulted in spontaneo...
متن کاملMolecular and Cellular Pathobiology Cytoplasmic CUL9/PARC Ubiquitin Ligase Is a Tumor Suppressor and Promotes p53-Dependent Apoptosis
A wide range of cell stresses, including DNA damage, signal to p53 through posttranslational modification of p53. The cytoplasmic functions of p53 are emerging as an important constituent of role of p53 in tumor suppression. Here, we report that deletion of the Cul9 (formerly Parc) gene, which encodes an E3 ubiquitin ligase that binds to p53 and localizes in the cytoplasm, resulted in spontaneo...
متن کامل